В прямоугольном параллелепипеде ABCDA1B1C1D1 известны ребра AA1 = 6, AB = 6, AD = 3 корня из 13. Найдите площадь сечения параллелепипеда плоскостью AMK, где точки М и К делят ребра BB1 и CC1 в отношении 1:2, считая от прямой ВС.
Для её решения этой задачи нужно просто представить то, что нам дано по условию и понять, что нужно найти. Рекомендую условие разбивать на части и каждую часть рассматривать отдельно. Сейчас я покажу, как это делается.
Читаем с самого начала: "В прямоугольном параллелепипеде..." - всё, достаточно. И так, у нас есть прямоугольный параллелепипед - трехмерная геометрическая фигура, которую лучше всего нарисовать на листочке бумаги. Вот как выглядит прямоугольный параллелепипед на рисунке. В жизни это обычная коробка для обуви.
Прямоугольный параллелепипед |
Прямоугольный параллелепипед с обозначениями |
Прямоугольный параллелепипед с размерами |
"Найдите площадь сечения параллелепипеда плоскостью AMK..." Ничего не понятно. Откуда взялись точки М и К? После этих слов в условии задачи ещё что-то написано. По этому пропускаем этот фрагмент и читаем дальше.
"...где точки М и К делят ребра BB1 и CC1 в отношении 1:2..." Ага, вот и точки появились. Ребра на рисунке мы можем найти, но как их разделить "... в отношении 1:2..."? Всё очень просто. Вспоминаем детский сад. "Разделите отрезок на три равные части и возьмите одну часть" - это очень простая задача, с которой справится даже ребенок. А мы уже взрослые. Как узнать, на сколько частей нужно делить? Выражение "Разделить в отношении 1:2" равнозначно выражению "Разделить на 3 части". Ведь 1+2=3. Длина всех вертикальных ребер равна 6 см. Одна часть будет равна 6/3=2 см. Нам нужно взять одну часть. Но какую? Нижнюю, верхнюю или среднюю? Читаем дальше условие задачи: "...считая от прямой ВС". Почему ребро ВС вдруг превратилось в прямую? Математики, как заправские карточные шулеры, очень любят подменять одни понятия другими, превращая простую задачу в настоящий ребус. Вот из-за таких ребусов многие ненавидят математику. Прямая ВС совпадает с ребром ВС и находится они на нижнем основании прямоугольного параллелепипеда, на донышке коробки. По этому мы берем нижнюю треть вертикальных граней. Обозначаем нужные точки на рисунке.
Прямоугольный параллелепипед с точками |
Прямоугольный параллелепипед и плоскости |
Прямоугольный параллелепипед и плоскость |
Вот только меня терзают смутные сомнения, что кто-то где-то запутался. Если для точек М и К брать не одну часть от ребер ВВ1 и СС1, а две части, тогда длина гипотенузы получается равной двум корням из тринадцати. При вычислении площади сечения число тринадцать вылезает из-под корня и площадь получается равной 78 сантиметров в квадрате. Явно кто-то ошибся. Либо математики при составлении своего ребуса, либо я не правильно расшифровал изящную словесность этого ребуса. Вот видите к чему могут приводить бездарные попытки казаться умнее, чем ты есть на самом деле. Это относится как ко мне, так и к математикам. Кстати, если бы в условии было указано соотношение 2:1, то и я бы правильно решил эту задачу и получил ответ без квадратного корня.
Для секущей плоскости А1МК решение получается очень даже красивое. Та же теорема Пифагора для зеленого треугольничка, та же площадь прямоугольника.
Решение для другой секущей плоскости |
P.S. Рисовать картинки можно на бумаге. Я картинки рисую на компьютере для того, чтобы и вам их показывать. Вы тоже можете так делать. Берете заготовку прямоугольного параллелепипеда и разрисовываете её под условия своей задачи. Тогда находить решение вам будет гораздо проще. Если у вас есть ноутбук и он перегревается от вашего чрезмерного усердия, тогда охлаждающая подставка поможет вам избавиться от проблем. Работает такая подставка от самого ноутбука и подключается к нему через USB разъем. Никаких розеток с собою носить не нужно. Очень удобно и практично.
Комментариев нет:
Отправка комментария