Помогите, пожалуйста! Я не понимаю геометрию(( У меня задача по типу вот этой, только числа другие. Мне бы сам ход решения.
ЗАДАЧА: Угол при вершине, противолежащей основанию равнобедренного треугольника, равен 30°. Найдите боковую сторону треугольника, если его площадь равна 25.
Помочь мне не трудно, но есть одна проблема: я понятия не имею о школьной программе и не представляю, что можно использовать при решении задачи, а что нельзя. Если просто брать математику и использовать её для решения, то задача решается довольно просто.
Начинаем рассуждать. У нас есть площадь равнобедренного треугольника и угол при его вершине. Нужно найти длину боковой стороны. Можно использовать теорему Пифагора, тригонометрические функции и всё то, чему вас учили до этого момента. Используя разные трюки с подстановками, можно в конце концов найти решение этой задачи. Я поступлю гораздо проще.
Для определения площади треугольника существует много разных формул. Вот к ним-то я и предлагаю присмотреться внимательнее.
![]() |
Площадь треугольника формулы |
![]() |
Равнобедренный треугольник |
Это взрослое решение. Все взрослые пользуются справочниками, не вдаваясь в подробности. Для инквизиторов от математики такое решение может показаться богохульством. Специально для инквизиторов мы сейчас выведем формулу площади равнобедренного треугольника через боковую сторону и синус угла в вершине. Как и предыдущее решение, это будет пример того, как нужно пользоваться математикой.
Стоп! Я обещал писать в режиме реального времени. Так вот, всё, что написано до сих пор, писалось в ночь с пятницы на субботу. Сейчас утро воскресенья. Почему я сразу всё не написал? Ну, во-первых, у меня проблемы с картинками тригонометрических формул - программа, в которой я их писал, начала глючить и не переключается на английский язык. Во-вторых, я, наверное, чувствовал, что у этой задачи есть очень простое, детское, решение. Сегодня утром до меня дошло.
Почему-то все самые интересные решения ко мне приходят по утрам. Может, я ночью с инопланетянами общаюсь? Может, это они за меня задачки решают? Есть там у них какой-то канал, типа Ютуба, под названием "Из жизни идиотов". Когда им становится грустно, они включают этот канал и начинают ухохатываться над нашими математиками с их идиотскими определениями и не менее грамотными решениями. Потом появляюсь я со своим; "Не могу решить задачу...". Они долго смеются и один говорит другому: "Покажи этому дурачку картинку, пусть исчезнет с экрана". Формулы можно записывать разными загогулинами и вкладывать в эти загогулины разный смысл. А вот геометрия на всю вселенную одна и у инопланетян равнобедренный треугольник выглядит точно так же, как и у нас. Именно поэтому инопланетяне понимают, что делают наши математики и им становится очень смешно. Мы ведь тоже смеемся, наблюдая за некоторыми проделками животных.
Это было маленькое лирическое отступление. Теперь перейдем к инквизиторским пыткам и я на время превращусь в математика-садиста, который будет мучить вас тригонометрией. Для начала картинка нашего равнобедренного треугольника с сохранением всех обозначений, принятых для произвольного треугольника. Почему я об этом специально говорю? Из-за тупости отдельных наших математиков. Если в формуле треугольника фигурирует один угол, то математик обозначит его как "альфа" и ему по барабану, этот угол находится в основании или в вершине треугольника. Это уже потом он будет тыкать пальцем в картинку и рассказывать, что именно этот угол он имел в виду, а не какой-нибудь другой. Когда же посторонний человек попробует воспользоваться такой формулой, вот тут и начинаются все проблемы в математике. И так, картинка.
![]() |
Равнобедренный треугольник |
![]() |
Вывод формулы площади равнобедренного треугольника |
Но всё гениальное просто. Давайте разрежем наш равнобедренный треугольник пополам и сложим две половинки в прямоугольник.
![]() |
Равнобедренный треугольник и прямоугольник |
Ну и наконец, само решение задачи.
![]() |
Сторона равнобедренного треугольника |
Комментариев нет:
Отправить комментарий