суббота, 2 апреля 2016 г.

Теорема косинусов

То, что я собираюсь вам рассказать, вы не найдете в учебниках. Вас никто не будет спрашивать об этом на уроках и на экзаменах. Возникает естественный вопрос - зачем вам это нужно? Разумные существа должны знать больше того, чему их учат. На примере теоремы косинусов, о которой я уже писал здесь, вы увидите, как можно пользоваться математикой.

Треугольник имеет три стороны и три угла. Внешний вид теоремы косинусов зависит от принятых обозначений углов и сторон треугольника. Для описания одного треугольника нам нужно три раза записать теорему косинусов, для каждой стороны отдельно.
Теорема косинусов. Три варианта. Математика для блондинок.
Теорема косинусов

Три стороны (и три угла) треугольника дают три варианта формулы для одного треугольника. В теореме косинусов можно использовать одну формулу и три варианта обозначений.

Варианты обозначения треугольника. Теорема косинусов. Математика для блондинок.
Варианты обозначения треугольника

Оба подхода позволяют описать все стороны и углы треугольника. Но для этого требуется либо три формулы, либо три картинки. В традиционных задачах по математике нас учат находить один из элементов треугольника.

Вопрос: Можно ли одной формулой с одним вариантом обозначений описать все элементы треугольника?

Ответ: Да, можно.


Рассмотрим, как это сделать при помощи теоремы косинусов. Доказательство теоремы косинусов в тригонометрической форме выглядит так.

Доказательство теоремы косинусов. Тригонометрическое доказательство. Математика для блондинок.
Доказательство теоремы косинусов

Не смотря на то, что доказательство на английском языке, вы без труда в нем разберетесь, поскольку язык математики универсальный для всей нашей планеты. Так вот, если в этом доказательстве изменить знак «минус» на знак «плюс», мы получим теорему косинусов для периметра треугольника.

Комментариев нет:

Отправить комментарий