четверг, 21 июля 2016 г.

Умножение

Тема занятий:
ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ В ПРЯМОУГОЛЬНИКЕ
На прошлом уроке мы рассмотрели
Переменные единицы измерения

Урок 8

Умножение


В результате умножения двух разных величин получается третья величина. При умножении изменения происходит как в области чисел, так и в области единиц измерения. Умножение возможно только для перпендикулярных величин. Умножение отражает качественные изменения величин.

Умножение сторон прямоугольника позволяет получить площадь.

Умножение сторон прямоугольника. Площадь прямоугольника. Математика для блондинок.
Умножение сторон прямоугольника

Для перехода от площади прямоугольника к единичной площади необходимо площадь разделить саму на себя. В этом случае возможны два варианта алгебраических преобразований. Следует особо подчеркнуть, что рекомендация математиков по сокращению одинаковых величин в числителе и знаменателе дроби [1, стр.66] сознательно контролируется для выявления смысла полученного результата. Первый вариант преобразований выглядит следующим образом.

Первый вариант единичной площади. Тангенс умножить на котангенс. Математика для блондинок.
Первый вариант единичной площади

Тангенс и котангенс связаны обратной пропорцией. Стороны прямоугольника могут изменяться как угодно, от бесконечно большой величины до бесконечно малой. Если изменение сторон выполняется с соблюдением обратной пропорции, то площадь прямоугольника останется неизменной.

Второй вариант преобразований представлен в алгебраической форме и в физических единицах измерения.

Второй вариант единичной площади. Умножение единиц измерения. Математика для блондинок.
Второй вариант единичной площади

Данное преобразование показывает, что в результате умножения двух разных единиц получается третья единица. Умножение – это взаимодействие двух перпендикулярных единиц измерения, в результате которого получается новая единица измерения. Поскольку любая величина является результатом умножения числа и единицы измерения, под цифрой «один» может подразумевается число, единица измерения или результат их взаимодействия.

Перпендикулярные единицы измерения никак не связаны между собой и могут иметь произвольный масштаб. Масштаб единиц измерения сомножителей определяет масштаб единиц измерения произведения, но не влияет на суть процесса – умножение приводит к качественному изменению исходных единиц измерения.

Площадь – это результат взаимодействия двух перпендикулярных измерений длины. Если умножить дюймы на метры или миллиметры на метры, то площадь будет выражаться в дюймах на метр или миллиметрах на метр. Традиционно, площадь принято выражать в одинаковых единицах измерения длины и ширины. На практике часто используются системы координат с разными масштабами по вертикали и горизонтали.

При определении площади квадрата размер стороны принято возводить во вторую степень. Но это совсем не означает, что сторона квадрата умножается сама на себя. Площадь по-прежнему можно определить только умножением длины на ширину, просто у квадрата они имеют одинаковые численные значения. Мы никогда не умножаем длину прямоугольника на длину или ширину на ширину, потому что результат таких действий не имеет смысла. Возведение в степень – это умножение разных перпендикулярных величин, имеющих одинаковые численные значения и единицы измерения.

Алгебраические преобразования произведения двух сумм в квадрат можно записать следующим образом:

Алгебраические преобразования. Произведение двух сумм. Преобразование многочлена. Математика для блондинок.
Алгебраические преобразования

Если считать, что величина a при возведении в квадрат умножается сама на себя, то обратное преобразование квадрата в произведение двух сумм будет невозможно. Как можно выполнить подобное преобразование, показано ниже в разделе «Разложение на слагаемые».

Диагональ прямоугольника и угол между диагональю и стороной являются дополнительными характеристиками взаимодействующих величин.

На следующем уроке мы рассмотрим
Примеры умножения

Комментариев нет:

Отправить комментарий