воскресенье, 18 марта 2018 г.

Сумма цифр числа

Сумма цифр числа - это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу "Сумма цифр числа". Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры - это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: "Найти сумму графических символов, изображающих любое число". Математики эту задачу решить не могут, а вот шаманы - элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

Графический символ числа. Математика для блондинок.
Графический символ числа
2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки - это не математическое действие.

Разрезание графического символа. Разделение числа на цифры. Математика для блондинок.
Разрезание графического символа

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

Преобразование цифр в числа. Математика для блондинок.
Преобразование цифр в числа

4. Складываем полученные числа. Вот это уже математика.

Сложение чисел. Математика для блондинок.
Сложение чисел
Сумма цифр числа 12345 равна 15. Вот такие вот "курсы кройки и шитья" от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про странный значок. Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления.  Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Сумма цифр числа. Математика для блондинок.
Сумма цифр числа
Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Кстати.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что ноль не является числом. Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых - нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Как-то так. Если я в чем-то не прав, покажите мне это. Я придерживаюсь правила, которому меня научила математика: никогда никому не верь, даже себе - ты тоже можешь ошибаться. 

суббота, 17 марта 2018 г.

Странный значок

Девушка идет по коридору научного учреждения. Видит на двери табличку:

Табличка на двери. Женский туалет. Математика для блондинок.
Табличка на двери
Открывает дверь и говорит:

- Ой! А это разве не женский туалет?
- Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

- Женский... Нимб сверху и стрелочка вниз - это мужской.

Мужской туалет. Табличка на двери. Математика для блондинок.
Мужской туалет

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Философская комната. Обозначение туалета. Математика для блондинок.
Философская комната

тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:




Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой  стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А - это не "минус четыре градуса" или "один а". Это "какающий человек" или число "двадцать шесть" в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.

воскресенье, 21 января 2018 г.

Позиционная система

Продолжим наш разговор о делении на ноль. Рассмотрим несколько примеров практического применения деления на ноль, без которого мы до сих пор обходились. Как обходились? Вместо алгебраических формул с применением деления на ноль, мы использовали слова. Рассмотрим позиционную систему записи чисел.

Наиболее естественной формой записи числа является одноразрядная система. Для этого бесконечному количеству чисел должно соответствовать бесконечное количество графических символов - цифр. Да, не самый удобный способ записи чисел. Придумать и запомнить такое практически невозможно.

Симметричным решением является унарная система записи чисел. Для изображения бесконечного количества чисел используется только один графический символ. Эта система записи чисел оказалась слишком громоздкой и неудобной в практическом применении.

Как компромиссное решение, наши изобретательные предки придумали позиционную систему записи. Я намеренно не пишу "систему записи чисел", поскольку позиционная система применяется и в грамматике. Смысл графических символов определяется их положением в записи. Так появилась письменность, а вместе с ней позиционная система счисления.

Есть много формул для описания позиционной системы счисления. Но среди них отсутствует одна - формула, описывающая появление разрядов. Я предлагаю делать это с применением деления на ноль. Введение в запись новых разрядов можно записать так:

Позиционная система и деление на ноль. Введение новых разрядов.
Позиционная система
Здесь N - это натуральное число, n - основание системы счисления. Ноль, деленный на ноль, описывает сам факт возникновения чисел и соответствует единичному разряду. Заполнив числами единичный разряд, мы придумываем следующий разряд и начинаем заполнять его. Например, десятки, сотни, тысячи... Если формула показывает введение разрядов от меньшего к большим, то при записи чисел мы располагаем разряды в обратном порядке - от больших к меньшим.

Поскольку разряды мы придумываем сами, то и математические свойства они имеют такие, какие мы в них закладываем. Это я к тому, что не стоить путать деление на ноль длины с делением на ноль числа в позиционной системе. 

Поскольку практика применения деления на ноль у нас отсутствует, от слова "совсем", не следует считать эту формулу доказательством существования деления на ноль. Это просто способ выражения своих мыслей на языке алгебры. Приживется в математике деление на ноль или нет, посмотрим через пару тысяч лет. Что, вы так долго не живете?! Ну, тогда занимайтесь способами продления жизни, а не разработкой нового оружия для убийства себе подобных.

воскресенье, 7 января 2018 г.

Деление на ноль

Вот как должно выглядеть деление на ноль для тех, кто на ноль делить не умеет.

Деление на ноль. Ноль, деленный на ноль равен единице. Величина, деленная на ноль, равна перпендикулярной величине. Математика для блондинок.
Деление на ноль
Где применяется деление на ноль? Везде: в алгебре, геометрии, физике и так далее. Почему мы до сих пор обходились без него? Нам ещё долго деление на ноль не понадобится.  Это совершенно другой уровень развития цивилизации: с телепортацией, межгалактическими путешествиями, созданием искусственных вселенных... Деление на ноль - это уровень богов с точки зрения того детского горшочка под названием "планета Земля", на котором мы сейчас сидим.

С делением на ноль тесно связан вопрос выживания нашего вида "Homo sapiens". Динозавры жили миллионы лет, но разумными существами не стали и на ноль делить не научились. Они благополучно дождались своего апокалипсиса и дружно отправились кто в рай, кто в ад. Выжили только атеисты, которых мы сегодня называем "птицы" :) Но вернемся к нашей картинке.

Под буквами нужно подразумевать всё: алгебру, геометрию, физику... Первая строка показывает, как из ничего появляется любая единица измерения. Затем мы эту единицу измерения преобразовываем в величину - результат взаимодействия числа и единицы измерения. Главное математическое свойство любой величины - умножение в пределах этой величины невозможно, может меняться только угол масштаба, что выражается математическим действием сложения или вычитания.

Теперь простыми словами. Мы в повседневной жизни часто вспоминаем математические множества? Никогда. Если мы и говорим о чем-то математическом, то мы говорим, прежде всего, о количестве чего-нибудь. Количество - это число, что-нибудь - это единица измерения. Возникновение всех единиц измерения, которыми мы пользовались в прошлом и будем пользоваться в будущем, описывается первой строчкой. "Человек придумал числа" - так нам говорят математики об истории возникновения чисел. Математическую формулу "придумывания" никто никто никогда не пишет. Парадокс, но современные математики не способны на языке алгебры описать историю возникновения математики.

Вторая строка на картинке показывает, как появляется величина, перпендикулярная уже существующей. Перпендикулярные величины можно умножать. Эта формула описывает реальный физический мир, в котором мы обитаем. Если умножить длину на ширину, то в результате мы получим площадь. А вот умножение штуки на штуку, рубля на руль, яблока на яблоко осмысленного результата не имеет. Вам математики не объясняли, почему так происходит? Боюсь, они сами в этом ничего не понимают - ведь единиц измерения, неотъемлемой части математики, для них не существует.

В 1900 году Давид Гильберт сформулировал 23 кардинальные проблемы математики. Так вот, к математике эти проблемы никакого отношения не имеют. Решение этих проблем должно было сделать учение современных шаманов от науки еще более стройным и убедительным. Ни о делении на ноль, ни, тем более, об умножении на ноль в этих проблемах не упоминается. Как и о других фундаментальных проблемах математики.