воскресенье, 21 января 2018 г.

Позиционная система

Продолжим наш разговор о делении на ноль. Рассмотрим несколько примеров практического применения деления на ноль, без которого мы до сих пор обходились. Как обходились? Вместо алгебраических формул с применением деления на ноль, мы использовали слова. Рассмотрим позиционную систему записи чисел.

Наиболее естественной формой записи числа является одноразрядная система. Для этого бесконечному количеству чисел должно соответствовать бесконечное количество графических символов - цифр. Да, не самый удобный способ записи чисел. Придумать и запомнить такое практически невозможно.

Симметричным решением является унарная система записи чисел. Для изображения бесконечного количества чисел используется только один графический символ. Эта система записи чисел оказалась слишком громоздкой и неудобной в практическом применении.

Как компромиссное решение, наши изобретательные предки придумали позиционную систему записи. Я намеренно не пишу "систему записи чисел", поскольку позиционная система применяется и в грамматике. Смысл графических символов определяется их положением в записи. Так появилась письменность, а вместе с ней позиционная система счисления.

Есть много формул для описания позиционной системы счисления. Но среди них отсутствует одна - формула, описывающая появление разрядов. Я предлагаю делать это с применением деления на ноль. Введение в запись новых разрядов можно записать так:

Позиционная система и деление на ноль. Введение новых разрядов.
Позиционная система
Здесь N - это натуральное число, n - основание системы счисления. Ноль, деленный на ноль, описывает сам факт возникновения чисел и соответствует единичному разряду. Заполнив числами единичный разряд, мы придумываем следующий разряд и начинаем заполнять его. Например, десятки, сотни, тысячи... Если формула показывает введение разрядов от меньшего к большим, то при записи чисел мы располагаем разряды в обратном порядке - от больших к меньшим.

Поскольку разряды мы придумываем сами, то и математические свойства они имеют такие, какие мы в них закладываем. Это я к тому, что не стоить путать деление на ноль длины с делением на ноль числа в позиционной системе. 

Поскольку практика применения деления на ноль у нас отсутствует, от слова "совсем", не следует считать эту формулу доказательством существования деления на ноль. Это просто способ выражения своих мыслей на языке алгебры. Приживется в математике деление на ноль или нет, посмотрим через пару тысяч лет. Что, вы так долго не живете?! Ну, тогда занимайтесь способами продления жизни, а не разработкой нового оружия для убийства себе подобных.

Комментариев нет:

Отправить комментарий