понедельник, 30 апреля 2018 г.

Множество и мультимножество

Понятия "множество" и "мультимножество" - это два козырных туза в рукавах шулера, в каждом рукаве по одному. Шулер достает из рукава тот козырный туз, который ему удобнее достать. В любом случае, всегда выигрывает шулер. Точно так же, любой математик всегда обоснует теорию множеств.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии. Смотрим.

Множество и мультимножество. Математика для блондинок.
Множество и мультимножество
 Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.  

Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, как это делается без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".  

Теория множеств

Теория множеств - это каменный век математики. Только шаманы знают, что к какому множеству принадлежит. Давайте посмотрим на теорию множеств со стороны и раскроем некоторые секреты шаманов.

Если верить Википедии, а сомневаться в правильности изложенных там текстов у меня нет оснований, "теория множеств стала основой многих разделов математики". Что же такое множество? Смотрим в той же Википедии.

Множество. Определение множества. Математика для блондинок.
Множество
"Одно из ключевых понятий математики ... не имеет определения". Это как? А точно так же, как в религии - никто не знает, что такое "душа", но все свято верят в её наличие. Не сомневаюсь, что подобным образом древние шаманы рассказывали о духах: дух леса, дух воды... Заметьте, понятие "множество" никак не связано ни с алгеброй, ни с геометрией, ни с физикой.  Подобный подход позволяет вешать на уши любую лапшу, всё равно никто не проверит. "Любой объект обычно считается множеством", а если объекта нет - тогда это "пустое" множество. Логика очень даже понятна и проста до идиотизма - даже если бублика нет, дырка от бублика всё равно остается. Дышите глубже и не поперхнитесь дыркой от бублика.

Для понимания сути теории множеств необходимо рассмотреть ещё одно математическое понятие - функция. Смотрим.

Функция. Определение функции. Математика для блондинок.
Функция
Понятие функции основано на теории множеств. И так, цитируя математиков, получаем: функция - это "интуитивное представление" о "соответствии между элементами двух" штучек, которые "не имеют определения" и представляют из себя "совокупность разных элементов, мыслимую как единое целое". Уффф... Очень научное объяснение. Впрочем, от шаманов другого ожидать не приходится: "интуитивно понятно", "очевидно", "естественным образом" - это их уровень.

Но, давайте посмотрим на теорию множеств сквозь призму функций, а точнее, через "соответствие между элементами двух множеств". Каждому элементу из стада охотников ставится в соответствие один или несколько элементов из стада добычи, каждому элементу из стада добычи ставится в соответствие один или несколько элементов из стада охотников. И только шаманы знают, что к какому стаду принадлежит и как правильно делить добычу. Так что же такое теория множеств? Это теория стада. Кстати,  что получится, если объединить стадо (множество) математиков и стадо (множество) баранов: бараны с математическим образованием или математики с бараньими мозгами? Я не знаю, что говорит теория множеств о результатах подобного объединения, но в реальности у математиков будет отличный пикник с шашлыками.

Я ничего не имею против теории множеств как одного из математических инструментов. Но выстаивать целые "научные" теории на таком примитивном и неопределенном понятии - это уже слишком. Любая теория должна проверяться практикой, даже математическая. Я вам покажу пример практического применения теории множеств на примере таких понятий, как "множество" и "мультимножество".