Здесь мы рассмотрим элемент математического неравенства, при помощи которого в математике обычно выражается несправедливость. Если знак равенства можно считать отражением справедливости, то
знаки "больше" и "меньше" отражают отсутствие таковой. Справедливость - это понятие относительное. То, что я считаю справедливым по отношению к вам, вы можете считать не справедливым по отношению к себе. И наоборот. То, что считаете справедливым вы, другие могут называть вопиющей несправедливостью. Каждый смотрит со своей колокольни. В математике всё это можно выразить при помощи знаков "больше" и "меньше".
Наблюдая за процессом сравнения со стороны, мы будем получать разные результаты в зависимости от того, в каком порядке мы выполняем сравнение. Небоскреб
БОЛЬШЕ хибарки. Хибарка
МЕНЬШЕ небоскреба. Как видите, результат сравнения зависит от того, что мы ставим на первое место при сравнении.
В математике неравенство возникает из-за того, что при записи математических выражений принят определенный порядок выписывания символов на бумаге. При этом один из символов обязательно будет на первом месте, второй символ - на втором. Это приводит к определенному результату при сравнении того, что эти символы обозначают. Если мы изменим порядок записи символов, то есть второй символ запишем на первом месте, а первый - после него, тогда у нас изменится результат сравнения. Математики очень удачно подобрали графические символы для обозначения понятий "больше" и "меньше". Вот смотрите.
Что такое неравенство? Это почти то же самое, что и уравнение. Решаются они практически одинаково. Единственное, о чем нужно помнить при решении неравенств, что знаки "больше" и "меньше" могут выворачиваться на изнанку, а знак равенства - нет. Собственно, знак равенства тоже можно вывернуть, но никаких отличий вы не увидите. Другое дело со знаками "больше" и "меньше". Если такой знак вывернуть на изнанку, тогда его нос будет смотреть в другую сторону.
Знак "больше" превратится в знак "меньше",
знак "меньше" превратится в знак "больше".
Никакой шаманской магии в этом нет. Обыкновенная относительность или, как её ещё называют в математике, зеркальная симметрия. Посмотрите на рисунок ниже.
Нижняя половина рисунка является зеркальным отражением верхней половины. Или наоборот. Теперь возьмите зеркало. Приставьте его перпендикулярно к экрану монитора так, чтобы одновременно видеть картинку на экране монитора и её отражение в зеркале. В зеркале нижняя и верхняя половины картинки поменяются местами. Если бы не надпись на картинке "математика для блондинок", то вообще нельзя было бы точно сказать, где сама картинка, а где её отражение. Кстати, применение на уроках математики прозрачной стеклянной доски, вращающейся вокруг вертикальной оси, поможет понять очень многие вещи в математике.
Так вот, если мы в математическом неравенстве меняем местами левую и правую части неравенства, то знак меняется на противоположный. Знак "больше" меняется на знак "меньше" и наоборот. То же самое происходит, когда мы умножаем всё неравенство на минус единицу. При этом меняются все знаки в левой и правой частях неравенства. Умножение на минус единицу мы можем использовать при решении неравенств.
Нужно помнить, что если мы переносим всего один элемент из одной части неравенства в другую и при этом МЕНЯЕМ ЗНАК "плюс" или "минус", то знак неравенства "больше" или "меньше" остается неизменным. Всё, как в уравнении. Если при переносе математического элемента через знак сравнения мы изменяем знак, результат сравнения не изменяется: равенство сохраняется, знак "больше" остается знаком "больше", знак "меньше" остается знаком "меньше".