понедельник, 8 апреля 2013 г.

Задача про трубы

Маленькое предисловие к истории задач про трубы и бассейны. Как показывают археологические исследования, у пещерных людей в каменном веке не было ни труб, ни бассейнов. Иначе на многих наскальных рисунках мы бы видели задачу про трубы и бассейн. Появился этот атрибут роскоши на заре развития древних цивилизаций. Фонтаны, бассейны, купальни... Во все эти резервуары вода должна была втекать. А чтобы не произошел очередной всемирный потоп, из этих же резервуаров вода должна была куда-то вытекать. Где-то в то время родилась задача про трубы и бассейны, которую до наших дней так любят математики. Если вы не пытались решать задачу про трубы и резервуары, значит вы вообще ни где и ни чему не учились.

И вот, с просторов океана науки прозвучал отчаянный крик о помощи, прямо сигнал СОС:

Помогите выбраться из труб бедной школьнице (только помедленнее и поподробнее): Первая труба пропускает на 4 литра воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом 396 литров она заполняет на 4 минуты дольше, чем вторая труба. Спасите, тону!

Да уж, допустить в наше время ещё одно крушение Титаника - это позор джунглям. Я внимательно прочел условие задачи. Если вам говорят о ком-то, что он в трех соснах заблудился - не смейтесь. Вы посмотрите, как математики сумели запутать две трубы! Вот кого нужно в разведку посылать! Даже если математики будут рассказывать врагу всё, что они знают, враги всё равно ничего не поймут.

И так... Начинаем с теории относительности Эйнштейна. Если первая труба пропускает меньше воды, значит вторая труба пропускает больше на те же 4 литра. Попробуем составить уравнение. Если из первой трубы вытекает икс литров за минуту, то со второй трубы вытекает икс плюс четыре литра в минуту. Это у нас скорость вытекания воды из трубы, которая измеряется в литрах, деленных на минуту.

Проверяем нашу логику. Чем дольше мы стоим со шлангом, тем больше лужа получится. Всё правильно. Записываем формулу:

скорость * время = объем

У скорости время в знаменателе, у времени просто время без прибамбасов. Оно при умножении попадет в числитель и сократится со знаменателем, в числителе остаются только литры нашей лужи. Правильную формулу мы составили!

(л/мин) * мин = л 

Отсюда время наполнения лужи заданного объема (в задаче её назвали "бассейн") будет равно объему, деленному на скорость истекания жидкости из дырки в трубе:)

время = объем / скорость

И так, время заполнения бассейна первой трубой по нашей формуле равно 396/х минут, а то же действие из второй трубы займет 396/(х+4) минут. Разность по времени между первой и второй трубой составляет 4 минуты. Теперь можем записать уравнение:

396/х - 396/(х+4) = 4

Приводим к общему знаменателю, сокращаем на 4 и получаем квадратное уравнение:

х^2 + 4х - 396 = 0

Решить квадратное уравнение можно здесь. У нас получилось два корня: 18 и -22. Отрицательной скорость быть не может, поскольку отрицательным не может быть ни объем воды, ни время. Значит, ответ в этой задаче будет звучать так: первая труба пропускает 18 литров в минуту.

P.S. От океана водного плавно перейдем к океану музыкальному. Во времена возникновения задачи про трубы все ездили на лошадях и горланили свои песни. Сегодня мы ездим на автомобилях и слушаем музыку. Для музыки в автомобилях придумали специальные резервуары, в которых она может храниться и из которых она может выливаться в ваши уши. Называются такие штучки FM модулятор. По сравнению со стоимостью водного бассейна, стоимость бассейна для музыки очень даже маленькая. Посмотрите цены на fm модулятор и убедитесь сами. Что такое модулятор? Это такой мини mp3 плеер для автомобиля. Выливаете музыку из компьютера на флешку без всяких труб, вставляете флешку в модулятор и наслаждаетесь льющейся музыкой. Работает FM модулятор от прикуривателя автомобиля. Вот такие вот у нас сейчас блага цивилизации. Это вам не каменный век и даже не древние цивилизации. Хотя и задачи в учебниках, и принципы их решения остались почти прежними.

Комментариев нет:

Отправить комментарий