И так, в Википедии я наткнулся на одну интересную картинку, где изображена древняя вавилонская глиняная табличка с изображением квадрата и клинописью. Надпись под табличкой уверяет нас, что здесь приводится значение корня из двух, вычисленное древними вавилонянами почти четыре тысячи лет назад. Вот эта картинка.
![]() |
Вавилонская табличка корень из двух |
Найдена эта табличка была давно и математики провели её исследование. Вот официальная версия, которую я раскопал на просторах Интернета буквально только что. По диагонали представлено значение корня из двух в шестидесятеричной системе счисления. Напоминаю, что составлена она была почти четыре тысячи лет назад. Точность для того времени потрясающая - пять знаков после запятой! Здесь уместно напомнить, что популярные в двадцатом веке нашей эры таблицы Брадиса имели только четыре знака после запятой.
Дальше идет предположение наших математиков, что на табличке изображены три числа. Поскольку нуля и запятой после целой части числа у древних вавилонян не было, то первое число можно трактовать двояко: и как целое число 30, и как дробь 30/60=0,5. Математики предположи, что вавилонская табличка показывает пример вычисления диагонали квадрата со стороной, равной 30. То есть, 30 умножается на корень из двух и получается результат - третье число. Берем в руки калькулятор и проверяем.
![]() |
Вычисление диагонали квадрата со стороной 30 |
Предположив, что 42 25 35 - это дробь без целой части, я взял в руки калькулятор и произвел вычисления. Результат показался мне до боли знакомым. Это число пи, деленное на 4? Очень грубое сравнение. Что ещё? Диагональ квадрата связана не только с корнем квадратным, но и с тригонометрическими функциями угла в 45 градусов. Набираю на калькуляторе пи/4, нажимаю кнопочку синуса и... Увиденное меня мня слегка шокировало - синус и косинус угла в 45 градусов представлен с точностью до шести знаков после запятой!
![]() |
Вавилонская табличка синус и косинус |
Кстати, математика древнего мира мне нравится гораздо больше современной. Я так полагаю, что наших математиков в древнем Вавилоне даже на порог школы не пустили бы. Ответ звучал бы приблизительно так: "Стройте собственные храмы и там проповедуйте свою веру в Определения, Множества и Функции".
И вот, после всех этих размышлений я ознакомился с официальной версией расшифровки вавилонской таблички. Это что - случайное совпадение? Лично я не верю в случайные совпадения. Но и с математикой не поспоришь - оба решения верны.
Какие недостатки у версии с умножением? Почему в качестве первого сомножителя выступает именно число 30, а не любое другое, например, 2? Почему квадратный корень из двух в шестидесятеричной системе счисления представлен с точностью до трех знаков после запятой, а результат вычисления имеет только два знака после запятой? Не хватило места для третьего знака? Не верю.
Какие достоинства у версии с тригонометрическими функциями? Два числа представлены с одинаковой точностью - три знака после запятой. Древняя вавилонская табличка является не примером умножения, а математическим справочником по свойствам квадрата.
Для того, чтобы разгадать загадку вавилонской таблички, нужно проанализировать и другие математические таблички того же периода.
P.S. 04.08.19г. Я не буду настаивать на том, что в древнем Вавилоне были известны понятия синуса и косинуса угла. Значения синуса и косинуса угла в 45 градусов совпадают с числом, равным единице, деленной на корень из двух. Обратные числа били известны в древнем Вавилоне и широко применялись. И так, скорее всего, на табличке, являющейся одним из элементов древнего математического справочника, указаны такие математические сведения для квадрата со стороной, равной единице:
1. Число - корень из двух (длина диагонали).
2. Обратное число - единица, деленная на корень из двух.
3. Число одна вторая (число "30" в шестидесятиричной системе счисления).
Поскольку в древнем Вавилоне вряд ли знали проценты, можно предположить, что третье число на табличке является линейной угловой функцией угла в 45 градусов. Геометрически, линейные угловые функции являются пропорциями деления полупериметра прямоугольника в зависимости от значения угла между его стороной и диагональю.
Были ли известны линейные угловые функции древним вавилонянам? Этот вопрос требует специального изучения, поскольку этот вид тригонометрических функций неизвестен современным математикам. А изучать то, чего не знаешь, очень даже проблематично.
Лично я очень хотел бы посмотреть на подобную справочную табличку древних вавилонян для прямоугольника с углами в 30 и 60 градусов или с другими значениями углов.
Комментариев нет:
Отправить комментарий